Search results for "Fractional equation"
showing 3 items of 3 documents
Uniqueness and reconstruction for the fractional Calder\'on problem with a single measurement
2020
We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes.
Maximal ℓ p ‐regularity of multiterm fractional equations with delay
2020
[EN] We provide a characterization for the existence and uniqueness of solutions in the space of vector-valued sequences l(p) (Z, X)for the multiterm fractional delayed model in the form Delta(alpha)u(n) + lambda Delta(beta)u(n) = Lambda u(n) + u(n-tau) + f(n), n is an element of Z, alpha, beta is an element of R+, tau is an element of Z, lambda is an element of R, where X is a Banach space, A is a closed linear operator with domain D(A) defined on X, f is an element of l(p)(Z,X) and Delta(Gamma) denotes the Grunwald-Letkinov fractional derivative of order Gamma > 0. We also give some conditions to ensure the existence of solutions when adding nonlinearities. Finally, we illustrate our resu…
An Existence Result for Fractional Kirchhoff-Type Equations
2016
The aim of this paper is to study a class of nonlocal fractional Laplacian equations of Kirchhoff-type. More precisely, by using an appropriate analytical context on fractional Sobolev spaces, we establish the existence of one non-trivial weak solution for nonlocal fractional problems exploiting suitable variational methods.